電池知識
鋰離子、磷酸鐵鋰、錳酸鋰、新能源
電池知識
鋰離子、磷酸鐵鋰、錳酸鋰、新能源
荷電狀態可定義為電池中可用電能的狀態,通常以百分比來表示。因為可用電能會因充放電電流,溫度及老化現象而有不同,所以荷電狀態的定義也區分為兩種:絕對荷電狀態(Absolute State-Of-Charge;ASOC)及相對荷電狀態(Relative State-Of-Charge; RSOC)。通常相對荷電狀態的范圍是 0% – 100%,而電池完全充電時是 100%,完全放電時是 0%。絕對荷電狀態則是一個當電 池制造完成時,依據所設計的固定容量值所計算出來的的參考值。一個全新完全充電電池的絕對荷電狀態是 100%;而老化的電池 即便完全充電,在不同充放電情況中也無法到 100%。
下圖顯示不同放電率下電壓與電池容量的關系。放電率愈高,電池容量愈低。溫度低時,電池容量也會降低。
最高充電電壓和電池的化學成分與特性有關。鋰離子電池的充電電壓通常是 4.2V 和 4.35V,而若陰極、陽極材料不同電壓值也會有所不同。
當電池電壓與最高充電電壓差小于 100mV,且充電電流降低至 C/10,電池可視為完全充電。電池特性不同,完全充電條件也有所不同。
下圖所顯示為一典型的鋰離子電池充電特性曲線。當電池電壓等于最高充電電壓,且充電電流降低至 C/10,電池即視為完全充電。
最低放電電壓可用截止放電電壓來定義,通常即是荷電狀態為 0%時的電壓。此電壓值不是一固定值,而是隨著負載、溫度、老化 程度或其他而改變。
當電池電壓小于或等于最低放電電壓時,可稱為完全放電。
充放電率是充放電電流相對于電池容量的一種表示。例如,若用 1C 來放電一小時之后,理想的話,電池就會完全放電。不同充放 電率會造成不同的可用容量。通常,充放電率愈大,可用容量愈小。
循環次數是當一個電池所經歷完整充放電的次數,是可由實際放電容量與設計容量來估計。每當累積的放電容量等于設計容量時, 則循環次數一次。通常在 500 次充放電循環后,完全充電的電池容量約會下降 10% ~ 20%。
所有電池的自放電都會隨著溫度上升而增加。自放電基本上不是制造上的瑕疵,而是電池本身特性。然而制造過程中不當的解決也 會造成自放電的增加。通常電池溫度每增加 10°C,自放電率即倍增。鋰電池每個月自放電量約為 1~2%,而各類鎳系電池則 為每月 10~15%自放電量。
電池管理可視為是電源管理的一部分。電池管理中,電量計是負責估計電池容量。其基本功能為監測電壓,充電/放電電流和電池 溫度,并估計電池荷電狀態(SOC)及電池的完全充電容量(FCC)。有兩種典型估計電池荷電狀態的辦法:開路電壓法(OCV)和 庫侖計量法。另一種辦法是由 RICHTEK 所設計的動態電壓算法。
用開路電壓法的電量計,其實現辦法較容易,可借著開路電壓對應荷電狀態查表而得到。開路電壓的假設條件是電池休息約超過30 分鐘時的電池端電壓。
不同的負載,溫度,及電池老化情況下,電池電壓曲線也會有所不同。所以一個固定的開路電壓表無法完全代表荷電狀態;不能單 靠查表來估計荷電狀態。換言之,荷電狀態若只靠查表來估計,誤差將會很大。
下圖顯示同樣的電池電壓分別在充放電之下,透過開路電壓法所查得的荷電狀態差異很大。
下圖可知,放電時不同負載之下,荷電狀態的差異也是很大。所以基本上,開路電壓法只適合對荷電狀態準確性要求低的系統,像汽車使用鉛酸蓄電池或不間斷電源等。
庫侖計量法的操作原理是在電池的充電/放電路徑上的連接一個測試電阻。ADC 量測在測試電阻上的電壓,轉換成電池正在充電或 放電的電流值。實時計數器(RTC)則提供把該電流值對時間作積分,從而得知流過多少庫倫。
庫侖計量法可精確計算出充電或放電過程中實時的荷電狀態。藉由充電庫侖計數器和放電庫侖計數器,它可計算剩余電容量 (RM) 及完全充電容量(FCC)。同時也可用剩余電容量(RM) 及完全充電容量 (FCC) 來計算出荷電狀態,即 (SOC = RM / FCC)。此外, 它還可預估剩余時間,如電力耗竭(TTE)和電力洋溢(TTF)。
主要有兩個因素造成庫倫計量法準確度偏差。第一是電流感測及 ADC 量測中偏移誤差的累積。雖然以目前的技術此量測的誤差還 算小,但若沒有消除它的好辦法,則此誤差會隨時間增加而增加。下圖顯示了在實際使用中,如果時間繼續中的未有任何的修正,則累積的誤差是無上限的。
為消除累積誤差,在正常的電池操作中有三個可能可使用的時間點:充電結束(EOC),放電結束(EOD)和休息(Relax)。充電結束條件達到表示電池已洋溢電且荷電狀態(SOC)應為 100%。放電結束條件則表示電池已完全放電,且荷電狀態(SOC)應當 為 0%;它可以是一個絕對的電壓值或者是隨負載而改變。達到休息狀態時,則是電池旣沒有充電也沒有放電,而且保持這種狀態 很長一段時間。若使用者想用電池休息狀態來作庫侖計量法的誤差修正,則此時非得搭配開路電壓表。下圖顯示了在上述狀態下的荷電狀態誤差是可以被修正的。
造成庫倫計量法準確度偏差的第二主要因素是完全充電容量(FCC)誤差,它是由電池設計容量的值和電池真正的完全充電容量的差 異。完全充電容量(FCC) 會受到溫度,老化,負載等因素影響。所以,完全充電容量的再學習和補償辦法對庫侖計量法是非常關 鍵緊要的。下圖顯示了當完全充電容量被高估和被低估時,荷電狀態誤差的趨勢現象。
動態電壓算法電量計僅依據電池電壓即可計算鋰離子電池的荷電狀態。此法是依據電池電壓和電池的開路電壓之間的差值,來估計荷電 狀態的遞增量或遞減量。動態電壓的信息可以有效地仿真鋰離子電池的行為,進而決定荷電狀態 SOC(%),但此辦法并不能估計電池容 量值(mAh)。
它的計算方式是依據電池電壓和開路電壓之間的動態差異,借著使用迭代算法來計算每次增加或減少的荷電狀態,以估計荷電狀態。 相較于庫侖計量法電量計的處理方案,動態電壓算法電量計不會隨時間和電流累積誤差。庫侖計量法電量計通常會因為電流感測誤 差及電池自放電而造成荷電狀態估計不準。即使電流感測誤差非常小,庫侖計數器卻會繼續累積誤差,而所累積的誤差惟有在完全 充電或完全放電才能消除。
動態電壓算法電量計僅由電壓信息來估計電池的荷電狀態;因為它不是由電池的電流信息來估計,所以不會累積誤差。若要提高荷 電狀態的精確度,動態電壓算法需要用實際的裝置,依據它在完全充電和完全放電的情況下,由實際的電池電壓曲線來調整出一優 化的算法的參數。
下面是動態電壓算法在不同放電速率條件下,荷電狀態的表現。由圖可知,它的荷電狀態精確度良好。不論是在 C/2,C/4,C/7和 C/10 等的放電條件下,此法整體的荷電狀態誤差都小于 3%。
下圖顯示在電池短充短放情況下,荷電狀態的表現。荷電狀態誤差依然很小,且最大誤差僅有 3%。
相較于庫侖計量法電量計通常會因為電流感測誤差及電池自放電而造成荷電狀態的不準的情形,動態電壓算法它不會隨時間和電流 累積誤差,這是一個大優勢。因為沒有充/放電電流的信息,動態電壓算法在短期精確度上較差,且反應時間較慢。此外,它也無 法估計完全充電容量。然而,它在長期精確度上卻表現良好,因為電池電壓最終會筆直反應它的荷電狀態。
聲明: 本站所發布文章部分圖片和內容自于互聯網,如有侵權請聯系刪除