電池知識
鋰離子、磷酸鐵鋰、錳酸鋰、新能源
電池知識
鋰離子、磷酸鐵鋰、錳酸鋰、新能源
便攜式電子設備設計人員可以選擇各種各樣的化學技術、充電器拓撲以及充電管理處理方案。選擇一款最為適宜的處理方案應當是一項很簡單的工作,但是在大多數情況下這一過程頗為復雜。設計人員需要在性能、成本、外形尺寸以及其他關鍵要求方面找到一個最佳平衡點。本文將為廣大設計人員和系統工程師提供一些指揮和幫助以使得該選擇工作變得更為輕松。
所有使用可充電電池的系統設計人員都需要清楚一些基礎設計技術,以確保滿足下面三個關鍵的要求:
1、電池安全性:毋庸置疑,終端用戶安全是所有系統設計中最優先考慮的問題。大多數鋰離子(Li-Ion)電池包和鋰聚合物(Li-pol)電池包都含有保護電子電路。然而,還有一些系統設計需要考慮的關鍵因素。其中包括但不局限于確保在鋰電池充電最后階段期間?1%的穩壓容限、安全解決深度放電電池的預解決模式、安全計時器以及電池溫度監控。
2、電池容量:所有的電池充電處理方案都要確保在每一次和每一個充電周期都能將電池容量充至洋溢狀態。過早的終止充電會導致電池運行時間縮短,這是當今高功耗的便攜式設備所不希望的。
3、電池使用壽命:遵循提議的充電算法是確保終端用戶實現每個電池包最多充電周期的緊要一步。利用電池溫度和電壓限定每一次充電、預解決深度放電電池并避免過晚或非正常充電終止是最大化電池使用壽命所非得的一些步驟。
表1:充電控制總結。
今朝系統設計人員可以在多種電池化學技術中進行選擇。設計人員通常會依據下面的一些標準進行電池化學技術的選擇,其中包括:
*能量密度
*規格和外形尺寸
*成本
*使用模式和使用壽命
近年來,盡管使用鋰電池和鋰聚合物電池的趨勢加強,但是Ni電池化學技術依然是諸多消費類使用一個不錯的選項。
無論選擇何種電池化學技術,遵循每一種電池化學技術的正確充電管理技術都是至關緊要的。這些技術將確保電池在每一次和每個充電周期都能被充至最大容量,而不會降低安全性或縮短電池使用壽命。
在一個充電周期開始之前,并且盡可能在開始快速充電之前對鎳鎘(NiCd)電池和鎳氫(NiMH)電池非得要進行檢驗和調節。如果電池電壓或溫度超出了準許的極限是不準許進行快速充電的。出于安全考慮,對所有“熱”電池(一般高于45?C)的充電工作都會暫時終止,直到電池冷卻到正常工作溫度范圍內才會再次運轉。要想解決一個“冷”電池(一般低于10?C)或過度放電的電池(每節電池通常低于1V),需要施加一個溫柔的點滴式電流。
當電池溫度和電壓正確時快速充電開始。通常用1C或更低的恒定電流對NiMH電池進行充電。一些NiCd電池可以用高達4C的速率進行充電。采用適當的充電終止來避免有害的過充電。
就鎳基可充電電池而言,快速充電終止基于電壓或溫度。如圖1所示,典型的電壓終止辦法是峰值電壓檢測,在峰值時即每個電池的電壓在0~-4mV范圍內,快速充電被終止。基于溫度的快速充電終止辦法是觀察電池溫度上升率來檢測完全充電。典型的率為1℃/每分鐘。
圖1:鎳電池化學技術的充電曲線。
與NiCd電池和NiMH電池相類似,在快速充電之前盡可能檢驗并調節鋰電池。驗證和解決辦法與上述使用的辦法相類似。
如圖2所示,驗證和預解決之后,先用一個1C或更低的電流對鋰電池進行充電,直到電池達到其充電電壓極限為止。該充電階段通常會補充高達70%的電池容量。然后用一個通常為4.2V的恒定電壓對電池進行充電。為將安全性和電池容量,非得要將充電壓穩定在至少?1%。在此充電期間,電池汲取的充電電流逐漸下降。就1C充電率而言,一旦電流電平下降到初始充電電流的10-15%以下充電通常就會終止。
圖2:鋰電池化學技術充電曲線。
傳統上來說,手持設備都使用線性充電拓撲。該辦法具有諸多優點:低實行成本、設計簡捷以及無高頻開關的無噪聲運行。但是,線性拓撲會增加系統功耗,尤其是當電池容量更高引起的充電率增加的時候。如果設計人員無法管理設計的散熱問題,這就會成為一個主要缺點。
當pCUSB端口作為電源時,則會出現其他一些缺點。當今在許多便攜式設計上都具有USB充電選項,并且都可提供高達500mA的充電率。就線性處理方案而言,由于其效率較低,可以從pCUSB傳輸的“電能”量就被大大降低,從而導致了充電時間過長。
這就是開關模式拓撲有用武之地的原由。開關模式拓撲的主要優點在于效率的提高。與線性穩壓器不同,電源開關(或多個開關)在飽和的區域內運行,其大大降低了總體損耗。降壓轉換器*率損耗的主要包括開關損耗(在電源開關中)以及濾波電感中的DC損耗。依據設計參數的不同,在這些使用中出現效率大大高于95%的情況就不足為奇了。
當人們聽到開關模式這個術語時大多數人都會想到大型IC、大powerFET以及超大型電感!事實上,雖然對于解決數十安培電流的使用而言實在是這樣,但是對于手持設備的新一代處理方案而言情況就不一樣了。新一代單體鋰離子開關模式充電器采用了最高級別的芯片集成,高于1MHz的使用頻率以最小化電感尺寸。圖1說明了當今市場上已開始銷售的此類處理方案。該硅芯片的尺寸不到4mm2,其集成了高側和低側powerFET。由于采用了3MHz開關頻率,該處理方案要求一個小型1uH電感,其外形尺寸僅為:2mmx2.5mmx1.2mm(WxLxH)。
電池充電器工具使得設計人員選擇正確的充電器的過程更輕松。圖3是TI網站上提供的一種工具的示例。
聲明: 本站所發布文章部分圖片和內容自于互聯網,如有侵權請聯系刪除