行業資訊
行業動態、科技前沿、新能源資訊
行業資訊
行業動態、科技前沿、新能源資訊
本文從淺入深,通過鋰電池充電器電路原理出發,逐步從了解鋰電池充電器充電原理和鋰電池相關知識,詳細解析如何給鋰電池設置合適的充電電壓和電流,希望借此文可以讓大家深入了解到鋰電池的基礎知識;
一、鋰電池與鎳鎘、鎳氫可充電池:
鋰離子電池的負極為石墨晶體,正極通常為二氧化鋰。充電時鋰離子由正極向負極運動而嵌入石墨層中。放電時,鋰離子從石墨晶體內負極表面脫離移向正極。所以,在該電池充放電過程中鋰總是以鋰離子形態出現,而不是以金屬鋰的形態出現。因而這種電池叫做鋰離子電池,簡稱鋰電池。
鋰電池具有:體積小、容量大、重量輕、無污染、單節電壓高、自放電率低、電池循環次數多等優點,但價格較貴。鎳鎘電池因容量低,自放電嚴重,且對環境有污染,正逐步被淘汰。鎳氫電池具有較高的性能價格比,且不污染環境,但單體電壓只有1.2V,因而在使用范圍上受到限制。
二、鋰電池的特點:
1、具有更高的重量能量比、體積能量比;
2、電壓高,單節鋰電池電壓為3.6V,等于3只鎳鎘或鎳氫充電電池的串聯電壓;
3、自放電小可長時間存放,這是該電池最突出的優越性;
4、無記憶效應。鋰電池不存在鎳鎘電池的所謂記憶效應,所以鋰電池充電前無需放電;
5、壽命長。正常工作條件下,鋰電池充/放電循環次數遠大于500次;
6、可以快速充電。鋰電池通常可以采用0.5~1倍容量的電流充電,使充電時間縮短至1~2小時;
7、可以隨意并聯使用;
8、由于電池中不含鎘、鉛、汞等重金屬元素,對環境無污染,是當代最先進的綠色電池;
9、成本高。與其它可充電池相比,鋰電池價格較貴。
三、鋰電池的內部結構:
鋰電池通常有兩種外型:圓柱型和長方型。
電池內部采用螺旋繞制結構,用一種非常精細而滲透性很強的聚乙烯薄膜隔離材料在正、負極間間隔而成。正極包括由鋰和二氧化鈷組成的鋰離子收集極及由鋁薄膜組成的電流收集極。負極由片狀碳材料組成的鋰離子收集極和銅薄膜組成的電流收集極組成。電池內充有有機電解質溶液。另外還裝有安全閥和PTC元件,以便電池在不正常狀態及輸出短路時保護電池不受損壞。
單節鋰電池的電壓為3.6V,容量也不可能無限大,因此,常常將單節鋰電池進行串、并聯處理,以滿足不同場合的要求。字串5
四、鋰電池的充放電要求;
1、鋰電池的充電:根據鋰電池的結構特性,最高充電終止電壓應為4.2V,不能過充,否則會因正極的鋰離子拿走太多,而使電池報廢。其充放電要求較高,可采用專用的恒流、恒壓充電器進行充電。通常恒流充電至4.2V/節后轉入恒壓充電,當恒壓充電電流降至100mA以內時,應停止充電。
充電電流(mA)=0.1~1.5倍電池容量(如1350mAh的電池,其充電電流可控制在135~2025mA之間)。常規充電電流可選擇在0.5倍電池容量左右,充電時間約為2~3小時。
2、鋰電池的放電:因鋰電池的內部結構所致,放電時鋰離子不能全部移向正極,必須保留一部分鋰離子在負極,以保證在下次充電時鋰離子能夠暢通地嵌入通道。否則,電池壽命就相應縮短。為了保證石墨層中放電后留有部分鋰離子,就要嚴格限制放電終止最低電壓,也就是說鋰電池不能過放電。放電終止電壓通常為3.0V/節,最低不能低于2.5V/節。電池放電時間長短與電池容量、放電電流大小有關。電池放電時間(小時)=電池容量/放電電流。鋰電池放電電流(mA)不應超過電池容量的3倍。(如1000mAH電池,則放電電流應嚴格控制在3A以內)否則會使電池損壞。
目前市場上所售鋰電池組內部均封有配套的充放電保護板。只要控制好外部的充放電電流即可。
五、鋰電池的保護電路:
兩節鋰電池的充放電保護電路如圖一所示。由兩個場效應管和專用保護集成塊S--8232組成,過充電控制管FET2和過放電控制管FET1串聯于電路,由保護IC監視電池電壓并進行控制,當電池電壓上升至4.2V時,過充電保護管FET1截止,停止充電。為防止誤動作,一般在外電路加有延時電容。當電池處于放電狀態下,電池電壓降至2.55V時,過放電控制管FET1截止,停止向負載供電。過電流保護是在當負載上有較大電流流過時,控制FET1使其截止,停止向負載放電,目的是為了保護電池和場效應管。過電流檢測是利用場效應管的導通電阻作為檢測電阻,監視它的電壓降,當電壓降超過設定值時就停止放電。在電路中一般還加有延時電路,以區分浪涌電流和短路電流。該電路功能完善,性能可靠,但專業性強,且專用集成塊不易購買,業余愛好者不易仿制。
六、簡易充電電路:
現在有不少商家出售不帶充電板的單節鋰電池。其性能優越,價格低廉,可用于自制產品及鋰電池組的維修代換,因而深受廣大電子愛好者喜愛。有興趣的讀者可參照圖二制作一塊充電板。其原理是:采用恒定電壓給電池充電,確保不會過充。輸入直流電壓高于所充電池電壓3伏即可。R1、Q1、W1、TL431組成精密可調穩壓電路,Q2、W2、R2構成可調恒流電路,Q3、R3、R4、R5、LED為充電指示電路。隨著被充電池電壓的上升,充電電流將逐漸減小,待電池充滿后R4上的壓降將降低,從而使Q3截止,LED將熄滅,為保證電池能夠充足,請在指示燈熄滅后繼續充1—2小時。使用時請給Q2、Q3裝上合適的散熱器。本電路的優點是:制作簡單,元器件易購,充電安全,顯示直觀,并且不會損壞電池.通過改變W1可以對多節串聯鋰電池充電,改變W2可以對充電電流進行大范圍調節。缺點是:無過放電控制電路。
七、單節鋰電池的應用舉例
1、作電池組維修代換品
有許多電池組:如筆記本電腦上用的那種,經維修發現,此電池組損壞時僅是個別電池有問題。可以選用合適的單節鋰電池進行更換。
2、制作高亮微型電筒
筆者曾用單節3.6V1.6AH鋰電池配合一個白色超高亮度發光管做成一只微型電筒,使用方便,小巧美觀。而且由于電池容量大,平均每晚使用半小時,至今已用兩個多月仍無需充電。電路如圖四所示。
3、代替3V電源
由于單節鋰電池電壓為3.6V。因此僅需一節鋰電池便可代替兩節普通電池,給收音機、隨身聽、照相機等小家電產品供電,不僅重量輕,而且連續使用時間長。
八、鋰電池的保存:
鋰電池需充足電后保存。在20℃下可儲存半年以上,可見鋰電池適宜在低溫下保存。曾有人建議將充電電池放入冰箱冷藏室內保存,的確是個好注意。
九、使用注意事項:
鋰電池絕對不可解體、鉆孔、穿刺、鋸割、加壓、加熱,否則有可能造成嚴重后果。沒有充電保護板的鋰電池不可短路,不可供小孩玩耍。不能靠近易燃物品、化學物品。報廢的鋰電池要妥善處理。四、鋰電池的充放電要求;
1、鋰電池的充電:根據鋰電池的結構特性,最高充電終止電壓應為4.2V,不能過充,否則會因正極的鋰離子拿走太多,而使電池報廢。其充放電要求較高,可采用專用的恒流、恒壓充電器進行充電。通常恒流充電至4.2V/節后轉入恒壓充電,當恒壓充電電流降至100mA以內時,應停止充電。
充電電流(mA)=0.1~1.5倍電池容量(如1350mAh的電池,其充電電流可控制在135~2025mA之間)。常規充電電流可選擇在0.5倍電池容量左右,充電時間約為2~3小時。
2、鋰電池的放電:因鋰電池的內部結構所致,放電時鋰離子不能全部移向正極,必須保留一部分鋰離子在負極,以保證在下次充電時鋰離子能夠暢通地嵌入通道。否則,電池壽命就相應縮短。為了保證石墨層中放電后留有部分鋰離子,就要嚴格限制放電終止最低電壓,也就是說鋰電池不能過放電。放電終止電壓通常為3.0V/節,最低不能低于2.5V/節。電池放電時間長短與電池容量、放電電流大小有關。電池放電時間(小時)=電池容量/放電電流。鋰電池放電電流(mA)不應超過電池容量的3倍。(如1000mAH電池,則放電電流應嚴格控制在3A以內)否則會使電池損壞。
注:目前市場上所售鋰電池組內部均封有配套的充放電保護板。只要控制好外部的充放電電流即可。鋰電池充電電路設計:
1.涓流充電階段。(在電池過渡放電,電壓偏低的狀態下)
3.0V以下。鋰電池內部的介質會發生一些物理變化,致使充電特性變壞,容量降低等。在這個階段,只能通過涓涓細流緩慢的對鋰電池充電,是鋰電池內部的電介質慢慢的恢復到正常狀態。
2.恒流充電階段。(電池從過放狀態恢復到了正常狀態)
IC外部的一個引腳外接一個電阻來決定。阻值大小則根據充電管理IC的datasheet上的公式來計算。
3.恒壓充電階段(已經充滿85%以上,在慢慢的進行補充)
在鋰電池的電容量達到了85%時候(約值),必須再次進入慢充階段。使電壓慢慢上升。最終達到鋰電池的最高電壓4.2V。
BAT的引腳輸出,這個BAT是連接到鋰電池端的。同時這個引腳也是鋰電池電壓檢收藏測引腳。鋰電池充電管理IC通過檢測這個引腳來判斷電池的各個狀態。
5V通過D2送到開關SW2,同時通過充電管理ICMCP73831來送到鋰電池。SW2的左邊點電壓為5V-0.7V=4.3V。由于鋰電池的電壓不管在充滿電或者非充滿狀態的時候,都低于SW2左邊點電壓4.3V。所以D1是截止的。充電管理IC正常對鋰電池充電。
D2和D1,后級LDORT9193直接接在BAT引腳輸出上,則會是充電IC在通電的時候,會產生誤判。會出現接上5V的外接電源,但是鋰電池不會進行充電,充電管理IC的LED燈指示也不對。后級負載LDO也不會得到正常的輸入電壓(輸入電壓很小)。在這種情況下,只要將充電管理IC的電壓輸入腳直接對BAT引腳短路連接一下,所有狀態又正常,充電能進行,后級負載LDO工作也正常。
IC在接上電的瞬間,要檢測BAT的狀態,將LDO的輸入引腳也連接到了BAT和鋰電池正極連接的支路中,會影響到BAT引腳的工作狀態,致使充電管理IC進入了涓流充電階段。將BAT引腳和充電管理IC的電壓輸入短路連接一下,使BAT引腳的電壓強制性的升高,使充電管理IC判斷為鋰電池進入了恒流充電階段,所以輸出大電流。能夠驅動后級負載LDO等。
D1和D2要選用壓降小的二極管。如鍺二極管,肖特基二極管,MOSFET開關管。在需要電池切換的設計中,具有10mV正向壓降、沒有反向漏電流的二極管是設計人員的一個“奢求”。但到目前為止,肖特基二極管還是最好的選擇,它的正向壓降介于300mV到500mV之間。但對某些電池切換電路,即使選擇肖特基二極管也不能滿足設計要求。對于一個高效電壓轉換器來說,節省下來的那部分能量可能會被二極管的正向壓降完全浪費掉。為了在低電壓系統中有效保存電池能量,應該選擇功率MOSFET開關替代二極管。采用SOT封裝、導通電阻只有幾十毫歐的MOSFET,在便攜產品的電流級別下可以忽略其導通壓降。
MOSFET來切換電源,最好對二極管導通壓降、MOSFET導通壓降和電池電壓進行比較,把壓降與電池電壓的比值看作效率損失。例如,把一個正向壓降為350mV的肖特基二極管用來切換Li+電池(標稱值3.6V),損失則為9.7%,如果用來切換兩節AA電池(標稱值2.7V),損失為13%。在低成本設計中,這些損失可能還可以接受。但是,當使用了高效率的DC-DC時,就要權衡DC-DC的成本和把二極管升級為MOSFET帶來的效率改善的成本。
MOSFET,還要考慮到產品上所用電池的放電特性。鋰電池的放電特性如下:
鋰電池在常溫狀態下,消耗了90%的電量的時候,電壓還是會保持在3.5V左右,選擇一個好點的LDO器件。那么在3.5V的時候,輸出電壓還是會穩定在3.3V.
LDORT9193來看,負載電阻在50歐姆,負載電流60mA的時候,輸入電壓和輸出電壓關系如下表所示:
2.8V2.65V
3.4v3.3V
4.0V3.0V
,即使是鋰電池消耗了90%的電量的時候,LDO的輸出端依然可以穩定輸出3.3V.從圖一A210的供電電路分析,加上硅二極管D1以后,LDO輸入電壓=3.5---0.7V=2.8V.這樣只要模塊燒錄可以在2.4V左右工作的程序,硅二極管也可以在此電路中使用了。從電路性能上來考慮,使用鍺二極管或者肖特基二極管是最好的選擇。
聲明: 本站所發布文章部分圖片和內容自于互聯網,如有侵權請聯系刪除